Searching for blog posts tagged with 'crops'

Neonics, crop losses, and ‘green activists’ – a plea for a little more accuracy in the media



I warn you now: this blog won’t be of much interest unless you’ve been following the neonic debate closely. It is in response to an opinion piece in the Telegraph by Christopher Booker (6 December 2014) and several recent blogs in a similar vein.

The gist of the article by Booker is that a group of dodgy scientists and green activists working for the International Union for the Conservation of Nature (IUCN) got together in 2010 and plotted to get neonics banned. They are said to have received £350,000 of EU money via the IUCN to fund this work, which ultimately resulted in the current moratorium on neonics. This moratorium has, according to Booker, “done huge damage to agriculture all over Europe”. He cites a recent EU report as saying that the cost to UK farmers alone already stands at £640 million. Booker goes on to say that there is no good evidence that neonics harm bees. He states that Defra’s own field trials had shown no damage to bees, whereas the IUCN group relied only on highly artificial laboratory experiments to reach their conclusions. He finishes with the bold claim that Owen Paterson, who fought against the moratorium and cited the Defra field trial in support of his position, was “easily the best-informed and most effective Defra secretary of state we’ve ever had”.

This all sounds like a great tale of dodgy doings, but let’s look at the actual facts for a minute. There is a group of scientists, linked to IUCN, who published a series of peer-reviewed scientific review papers on the impacts of neonics on the environment in summer 2014. These papers are all available for anyone to read at They are simply a review of the existing evidence – if you are really interested, read them yourself, and you can decide whether they are any good. I was asked to join this group in summer 2012, with a view to helping to write these papers, and it seemed like a good idea – the group contains many well-respected scientists from all over the world, bringing together diverse expertise. Scientists commonly come together in this way to write lengthy reviews of important topics. It is wildly inaccurate to say, as Booker does, that we relied “only on highly artificial laboratory experiments” – our reviews examined and describe hundreds of studies, many of them conducted in the field. The Defra field trial to which Booker attaches such weight was a total cock-up since all the ‘control’ bees became exposed to pesticides, so it was never published.      

You might wonder whether I received a share of the £350,000 for my contribution. So far as I know, there never was £350,000. I received nothing – in fact on the one occasion when I attended a meeting of this group I had to pay my own travel expenses. The whole thing was done on a shoestring, as meetings of scientists usually are. I did get a free cup of coffee. 

So what about the central claim that this group somehow engineered the neonic ban? The ban was proposed in January 2013, as a direct result of the European Food Standards Agency publishing three reports on neonics which concluded that they posed an “unacceptable risk” to bees. This was voted through in April 2013, and began in December 2013. Our reviews were not published until the summer of 2014, 16 months AFTER the ban was agreed in the European Parliament. So unless members of the European Parliament are able to see into the future, it is hard to see how their decision could have been influenced in any way by a group that had not at the time published anything whatsoever.

Finally, what about the “huge damage” that the neonic ban has done, and this figure of £640 million in crop losses in the UK alone?  I follow this topic closely, but have not heard of any such report. £640 million would represent the loss of about 12% of Britain’s entire agricultural output (including arable, dairy, horticulture etc.). Since the moratorium really only applies to oilseed rape, this would require the entire crop to have been wiped out (the total annual value of this crop varies between about £400 million and £700 million). However, the first sowing of oilseed rape without neonics in the UK was august 2014. About 1.5% was lost to flea beetle, according to the Home Grown Cereal Authority. Yes, that is correct - so 98.5% of the crop is fine. The crop won’t be harvest until summer 2015, so we have no way of knowing what the yield will be, or what losses, if there are any, might be due to the absence of neonics. So where on earth does this figure come from? Perhaps Booker also possesses the gift of foresight, and has foreseen a biblical plague of locusts in the spring?

Given all these wild inaccuracies, the claim that climate-sceptic Owen Patterson was “easily the best-informed and most effective Defra secretary of state we’ve ever had” starts to seem quite reasonable by comparison. Why do newspapers publish such twaddle?



PS To learn more about the neonicotinoid story, try reading chapter 13 of my new book, “A Buzz in the Meadow”

Biodiversity v Intensive Farming; Has Farming Lost its Way?



[This blog was posted as a guest blog on the Journal of Animal Ecology website, 16 Jan 2015, duplicated here for those that check my Uni blog]

Modern intensive farming produces plentiful, cheap food but is reliant on heavy use of agrochemicals and is a major driver of the ongoing collapse of wildlife populations. Taxpayers pay billions each year to support this system, with the bulk of this money going to the biggest, richest farming operations. In this blog I examine how we got to this unhappy position, question the need to further increase food production given current food waste, and suggest that we need to move towards a more sustainable, evidence-based farming system, with a source of independent advice for farmers, rather than allowing the agrochemical industry to shape the future of farming.  

It is not politically correct to criticise farmers or farming. We are brought up on stories about the adventures of a playful piglet who lives on a farm with a sheepdog, half a dozen chickens and a smiling cow, all presided over by a rosy-cheeked farmer, his wife and their two children. Farmers might also be portrayed as custodians of the land, where the countryside that they look after is filled with the sound of skylarks singing, bumblebees buzzing amongst the hedgerows, and butterflies flitting across sunlit, flowery meadows. 

Farming is of course the most fundamentally important of human activities; without farms and farmers, we would quickly starve. Going back to hunter-gathering is not an option. What is more, the human population is growing, and therefore we must increase food production. The United Nations Food and Agriculture Organisation (FAO) declared in 2010 that we must double food production by 2050, and this rationale is used to justify the drive for ever-increasing yield. One might argue that we should focus all our research on increasing yield at all cost, else our grandchildren will starve.

These are two quite different views of farming, the former obviously wildly inaccurate, but in both the farmer is the hero. Of course there is a contradiction between the two, a fundamental conflict. The drive to increase food production has resulted in an intensive farming system that is scrubbing wildlife from the face of the land. In Europe, we have good long-term data on populations of birds, butterflies and moths, and the overwhelming pattern is that most species are in retreat (e.g. Fox et al. 2014 J Appl. Ecol. 51: 949-957; Inger et al. 2015). Rather few larks are still singing, and most of the butterflies are gone.  A recent study by Inger et al estimates that bird populations in Europe have fallen by 420 million in the last 30 years. Groups for which we have less precise data, such as bees and beetles, also seem to be going the same way. For the UK this depressing pattern is summarised nicely in RSPB’s 2013 “State of Nature” report, which makes bleak reading. In short, farmland wildlife underwent massive declines through the twentieth century and in the twenty first century is still in rapid decline. Indeed, recent data for butterflies suggest that declines in many farmland species are accelerating

This continued decline is, on the face of it, puzzling. In Europe very large sums of tax-payers money are spent on agri-environment schemes: money paid to farmers to implement mechanisms to increase wildlife[1]. On the whole, farmers do not grub out hedgerows any more, or plough up ancient hay-meadows. They are more likely to replant hedgerows and attempt to restore flower-rich grasslands. Yet this does not seem to be working, for wildlife continues to disappear. What has gone wrong?

I would argue that there are two explanations. The first is that much of the funding for agri-environment schemes is wasted. The basic entry-level greening measures are so unambitious that a lot of farmers have to do next to nothing to qualify. There is little policing of what they actually do, and implementation of some schemes often fails. Wildflower strips on field margins are a good example – intended to support pollinators, they often don’t establish well, and end up containing nothing but coarse grasses. There are some shining examples of farmers who have successfully implemented a range of such schemes with measurable benefits for wildlife, but they are few and far between. [Note that these schemes have recently been revised in Europe, but overall funding has been cut and many farmers currently in the higher level schemes will soon find themselves getting no agri-environment subsidies at all, so it is unlikely that there will be a net improvement]  

The second relates to the way crop production systems have developed. Forty years ago there was substantial government funding for agronomic research. In the UK, we had many state-owned experimental farms where scientists developed new crops and devised integrated pest management programs. Rachel Carson’s famous 1963 book “Silent Spring” had highlighted the potential dangers of over-reliance on pesticides, and there was great interest in biological control agents, trap crops, rotations, cultural controls, use of resistant varieties, and so on. Today, most of those experimental farms have gone, or become essentially privatised, in attempts at cost-saving by successive governments. Industry has stepped in to fill the gap, shaping agriculture to its own ends. Now, agronomic funding comes almost entirely from the private sector – particularly the big companies that manufacture pesticides and develop GM crops. Most of the agronomists that advise farmers work for agrochemical companies (the figure is 71% in the UK[2]). Most arable farms in the UK use a minimal rotation –wheat, wheat, oilseed rape. Crops are commonly treated with ~20 different pesticides in a season[3], many of them applied prophylactically. [Ask yourself this: if you were growing veg in your garden for your family to eat, would you be comfortable spraying them with a cocktail of 20 different insecticides, fungicides, herbicides and molluscicides? If the answer is no, why are you happy buying food from the supermarket?]. The principles of IPM seem to have been discarded along the way. We have allowed current farming systems to be moulded by industry, and their goal is not to feed poor people in developing countries. Nor is it to look after wildlife, or worry about the long-term sustainability of production systems. It is to make the biggest profit that they can. Minimising pesticide use would be good for the environment, good for the long-term sustainability of farming, good for the farmer, and good for the consumer. But it won’t make big agrochemical companies rich.

Consideration of the current risk assessment procedures for new agrochemicals sheds some light on the failure of the current system. Typically, the safety of agrochemicals is examined by conducting acute toxicity tests for each compound on non-target organisms such as rats and bees, and comparing the response to plausible exposure scenarios in the field. So long as the animals are unlikely to receive a dose in the field anywhere near that which produces harm in short-term lab tests, all is regarded as well. These data are generally not made public, so they cannot be inspected or evaluated by independent scientists. There is currently no requirement to demonstrate that the new product provides a significant improvement in yield; such trials are presumably conducted by industry (well, one would like to think so), but are not made public. Under the current system, once a new product is on the market, farmers have little in the way of reliable, independent information available to them as to either the environmental risks posed or the efficacy of each product. They are largely reliant on the companies that manufacture the chemicals to advise them as to which ones they should use, with competing manufacturers providing conflicting advice, and all with a strong incentive to prescribe more use than may be necessary.

The current agrochemical regulatory system is clearly woefully inadequate.  In the real world, non-target organisms living in farmland are chronically exposed to multiple agrochemicals throughout their lives, not one at a time in a single dose. We know that these chemicals do not always act additively; for example some fungicides, while being of very low toxicity to insects in themselves, can greatly increase the toxicity of insecticides when an insect is simultaneously exposed to both. Such interactions will only be discovered when the chemicals have been approved and are in widespread use, which is far too late if one wishes to prevent environmental harm.

Interactions between agrochemicals, and the consequences of chronic rather than acute exposure, are just two important aspects that the current regulatory system fails to capture. Complex interactions also occur between agro-chemicals and other stressors. For example, low doses of pesticides which would produce no measurable effect in a lab toxicity trial can impair the immune system of honey bees, rendering them susceptible to viruses. Hungry animals (such as bees in flower-poor intensive farmland) are also more susceptible to both toxins and disease than well-fed lab stocks.  In short, our current regulatory system does not come anywhere close to approximating the complexities of the real world, and as a result we have failed to adequately protect biodiversity from the many stressors imposed by modern farming.

Of course it would never be possible to conduct realistic, long-term tests on every plausible combination of chemicals and other stressors. Perhaps we simply have to accept that modern, intensive farming is necessary if we don’t want to starve, and that loss of our wildlife is an unavoidable price that we have to pay?

I would suggest that there is a way forwards, but that we need a radically different, holistic and transparent approach based on scientific evidence. We need long-term farm-scale studies of crop production systems, comparing both the yield, profitability and the consequences for biodiversity and ecosystem services of different systems (e.g. conventional versus a reduced input, “Integrated Pest Management” approach versus organic). Such studies need not be enormously expensive, for the farms would still be productive. Surprisingly few studies have simultaneously compared profitability and biodiversity benefits across farming systems, yet this is the fundamental trade-off in food production. Indeed, for most agrochemicals there is currently little publicly available evidence as to what yield benefits they individually provide[4]. If a new chemical, crop or farming system were to be proposed, and provided that it passed some basic safety tests, it could then by trialed alongside existing approaches. Only if a new product significantly increased yield, or was found to have positive benefits for biodiversity, or both, would it be approved. Such a system would evaluate new products in the context in which they would be used in the real world, rather than highly unrealistic trials as currently used. New agri-environment schemes could be evaluated using the same framework. All such studies should be open access. This has parallels to the laudable move to “evidence-based medicine” whereby new drugs or therapies are only approved following trials demonstrating that they provide a significant improvement over existing treatments. At present, our farming systems are not evidence-based, and what evidence that is available is hidden.     

I would also argue that we should question the drive towards further yield increases. People are not starving because we don’t grow enough food. In India, obesity is now a bigger problem than starvation. We grow more than enough food, but estimates suggest that nearly half of what is grown goes to waste, and many of us eat far more meat and many more calories than is good for us. In the developed world we spend less on food, as a proportion of income, than we ever did – food is cheap. It is a disgrace that anyone is still starving, but it has nothing to do with food production.  Indeed, if one could largely eliminate food waste then every farm in the world could go organic and, even with the concomitant reduction in yield, there would still be more than enough food to go around.    

Without a radical overhaul of farming systems, and of the way agronomic research is funded and conducted, there is no doubt that we will lose a significant portion of our biodiversity. Even for those that don’t give a damn about wildlife, this ought to be a major cause for concern because we depend upon wildlife to deliver the ecosystem services that underpin food production. We should be focussing on sustainable production of healthy food, not on producing more cheap, pesticide-laced food and then throwing half of it away. In our rush to increase yields, based on an ill-conceived notion that this is needed to feed the world, we run the risk of irrevocably damaging our environment and hence our food production system, so that our grandchildren really do starve. 


Dave Goulson

(twitter: @DaveGoulson)

[1] The EU gives out €59 billion per year in total in subsidies to farmers. Most of this is dished out as single farm payments, which are more-or-less payments simply for owning the land. There is currently no cap, so some major landowners receive millions in subsidies. For example in France, the 160 biggest farm holdings receive €123 million between them. The UK fought hard, and succeeded, in blocking EU proposals to cap subsidies at €300,000 per farmer. The vast majority of this money does not go to poor farmers in marginal areas who might be deserving of support. One might question why such extra-ordinary sums of tax-payers money should be given to rich people or corporations to enable them to continue to farm in a way that is destroying our natural heritage.  

[2] This figure was provided by an independent agronomist, Caroline Corsie, but I am unable to find official figures.

[3] I have quotes this figure before, and it has been heavily criticised. It was originally based on surveys of arable farms in East Sussex in south east UK, which applied between 18 and 21 different pesticides to each wheat or oilseed rape field in 2013 (some of them multiple times). I’ve heard it said that we must have found the most intensively farmed fields in England. However, Defra’s own statistics demonstrate that this is spot on – their PUSSTATS website is open access, and one can obtain information on the total area of arable crops in Britain, and the total area treated with pesticides. The latter is almost exactly 20 times the former, demonstrating that the average arable field receives 20 applications. This average includes organic farms, so the mean for conventional farms must be higher.  

[4] This was recently highlighted by an astonishing revelation from the USA Environmental Protection Agency. They revealed a number of studies showing that application of neonicotinoid seed dressings to soya beans has zero impact on yield. At the advice of agronomists, farmers had been routinely applying neonics to soyabeans over 30 million ha, at an annual cost of $240 million. This seems to refute the oft-used argument “Farmers aren’t fools – they wouldn’t waste money on pesticides they didn’t need”. 

Crop yields higher than ever without neonics



In the run up to the vote on a EU-wide moratorium on use of neonicotinoids on flowering crops, which came about because of a growing body of scientific evidence that they were doing significant harm to bees, the agrochemical industry produced glossy documents declaring that this moratorium would cause massive reductions in crop yields, huge job losses in the agriculture sector, etc. etc.. You can read one such report here: This tells us that, if the moratorium were to go ahead, “the EU could lose 17 billion EUR and more; 50 thousand jobs could get lost economy-wide; and more than a million people.. would certainly suffer..”. They wanted us to believe that farmers couldn’t grow crops without these chemicals.

As you probably know, the moratorium went ahead, though the UK voted against it, presumably won over by such arguments. Now we are in the second year of the moratorium, we can start to evaluate whether this was true. Annual spring-sown crops that were sown in 2014 without neonics (sunflower and maize) have now been harvested. And the yields? Across the EU, which includes regions with a broad range of climates, yields were HIGHER that the five year average, in some regions more than 25% higher. You can see this for yourself at: - have a look at the December 2014 Bulletin [1].  Whatever happened to the crop devastation predicted by industry? It now starts to look like a lot of hot air and bull***t.

Right now, there is a pitched battle in Ontario – the state government is proposing major restrictions on neonics, and the agrochemical industry are pulling out all the stops to prevent it, perhaps because they fear that other parts of North America might follow suit if Ontario go ahead. They published a full page “Open letter to Ontarians” in several major newspapers, in which they claim that neonics don’t harm bees, and that they are “vital” to farmers.  Déjà vu? Ontarians might do well to look at Europe when weighing up the truth of these claims. I for one am not inclined to believe them.  

All this also makes me wonder - what other chemicals has industry been telling farmers they need, when actually they don't? How much of pesticide use is based on evidence, and how much on marketing hype/ sales pressure?

[1] Note that oilseed rape is autumn sown so the first crop without neonics wasn’t sown until August 2014, we won’t see the yields until summer 2015]

Dave Goulson's research lab website